Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
在这项工作中,我们研究了生成图像模型的性能和评估如何受到其培训数据集的种族组成的影响。通过检查和控制各种培训数据集中的种族分布,我们能够观察不同培训分布对生成的图像质量和生成图像的种族分布的影响。我们的结果表明,生成的图像的种族组成成功地保留了培训数据。但是,我们观察到截断是一种用于在推断过程中生成更高质量图像的技术,加剧了数据中的种族失衡。最后,在检查图像质量与种族之间的关系时,我们发现给定种族的最高可感知的视觉质量图像来自该种族代表性很好的分布,并且注释者始终偏爱白人的生成图像,而不是黑人。
translated by 谷歌翻译
电视节目描述了各种各样的人类行为,并已广泛研究其成为许多应用程序的丰富数据来源的潜力。但是,大多数现有工作都集中在2D识别任务上。在本文中,我们观察到电视节目中有一定的持久性,即对环境和人类的重复,这使得该内容的3D重建成为可能。在这种见解的基础上,我们提出了一种自动方法,该方法在整个电视节目的整个季节中运作,并在3D中汇总信息;我们构建了环境,计算摄像头信息,静态3D场景结构和身体尺度信息的3D模型。然后,我们演示了这些信息如何充当丰富的3D背景,可以指导和改善3D人类姿势和位置在这些环境中的恢复。此外,我们表明,关于人类及其环境的推理在3D中可以实现广泛的下游应用:重新识别,凝视估计,摄影和图像编辑。我们将我们的方法应用于七个标志性电视节目的环境中,并对所提出的系统进行广泛的评估。
translated by 谷歌翻译
当地球经历全球变暖时,自然灾害,如洪水,龙卷风或野火,越来越普遍普遍。很难预测事件的何时何时会发生,所以及时的应急响应对于拯救受破坏事件危害的人的生命至关重要。幸运的是,技术可以在这些情况下发挥作用。社交媒体帖子可以用作低延迟数据源来了解灾难的进展和后果,但解析此数据无需自动化方法。在前的工作主要集中在基于文本的过滤,但基于图像和基于视频的过滤仍然很大程度上是未开发的。在这项工作中,我们介绍了一个大规模的多标签数据集,其中包含977,088个图像,43个事件和49个地方。我们提供数据集建设,统计和潜在偏差的详细信息;介绍和训练事件检测模型;在Flickr和Twitter上为数百万图像进行图像过滤实验。我们还提出了一些关于事件分析的申请,以鼓励和使未来的人道主义援助中的计算机愿景工作。代码,数据和模型可在http://incidentsdataset.csail.mit.edu上获得。
translated by 谷歌翻译
The release of ChatGPT, a language model capable of generating text that appears human-like and authentic, has gained significant attention beyond the research community. We expect that the convincing performance of ChatGPT incentivizes users to apply it to a variety of downstream tasks, including prompting the model to simplify their own medical reports. To investigate this phenomenon, we conducted an exploratory case study. In a questionnaire, we asked 15 radiologists to assess the quality of radiology reports simplified by ChatGPT. Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed key medical findings, and potentially harmful passages were reported. While further studies are needed, the initial insights of this study indicate a great potential in using large language models like ChatGPT to improve patient-centered care in radiology and other medical domains.
translated by 谷歌翻译
The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. In this paper, we argue that this makes SINDy a potentially useful tool for causal discovery and that existing tools for causal discovery can be used to dramatically improve the performance of SINDy as tool for robust sparse modeling and system identification. We then demonstrate empirically that augmenting the SINDy algorithm with tools from causal discovery can provides engineers with a tool for learning causally robust governing equations.
translated by 谷歌翻译
The United States coastline spans 95,471 miles; a distance that cannot be effectively patrolled or secured by manual human effort alone. Unmanned Aerial Vehicles (UAVs) equipped with infrared cameras and deep-learning based algorithms represent a more efficient alternative for identifying and segmenting objects of interest - namely, ships. However, standard approaches to training these algorithms require large-scale datasets of densely labeled infrared maritime images. Such datasets are not publicly available and manually annotating every pixel in a large-scale dataset would have an extreme labor cost. In this work we demonstrate that, in the context of segmenting ships in infrared imagery, weakly-supervising an algorithm with sparsely labeled data can drastically reduce data labeling costs with minimal impact on system performance. We apply weakly-supervised learning to an unlabeled dataset of 7055 infrared images sourced from the Naval Air Warfare Center Aircraft Division (NAWCAD). We find that by sparsely labeling only 32 points per image, weakly-supervised segmentation models can still effectively detect and segment ships, with a Jaccard score of up to 0.756.
translated by 谷歌翻译
We present a human-in-the-loop evaluation framework for fact-checking novel misinformation claims and identifying social media messages that violate relevant policies. Our approach extracts structured representations of check-worthy claims, which are aggregated and ranked for review. Stance classifiers are then used to identify tweets supporting novel misinformation claims, which are further reviewed to determine whether they violate relevant policies. To demonstrate the feasibility of our approach, we develop a baseline system based on modern NLP methods for human-in-the-loop fact-checking in the domain of COVID-19 treatments. Using our baseline system, we show that human fact-checkers can identify 124 tweets per hour that violate Twitter's policies on COVID-19 misinformation. We will make our code, data, and detailed annotation guidelines available to support the evaluation of human-in-the-loop systems that identify novel misinformation directly from raw user-generated content.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
Automatic defect detection for 3D printing processes, which shares many characteristics with change detection problems, is a vital step for quality control of 3D printed products. However, there are some critical challenges in the current state of practice. First, existing methods for computer vision-based process monitoring typically work well only under specific camera viewpoints and lighting situations, requiring expensive pre-processing, alignment, and camera setups. Second, many defect detection techniques are specific to pre-defined defect patterns and/or print schematics. In this work, we approach the automatic defect detection problem differently using a novel Semi-Siamese deep learning model that directly compares a reference schematic of the desired print and a camera image of the achieved print. The model then solves an image segmentation problem, identifying the locations of defects with respect to the reference frame. Unlike most change detection problems, our model is specially developed to handle images coming from different domains and is robust against perturbations in the imaging setup such as camera angle and illumination. Defect localization predictions were made in 2.75 seconds per layer using a standard MacBookPro, which is comparable to the typical tens of seconds or less for printing a single layer on an inkjet-based 3D printer, while achieving an F1-score of more than 0.9.
translated by 谷歌翻译